
Moderators: Polly, Muiz, NadjaNadja, Telpeva, Essie73, ynskek, Ladybird
luuntje schreef:Op school van zoon ligt een brief voor de gymlessen.
Ringen hangen, handstand, touw slingeren, piepjes testen mag hij niet doen.
Bespreken we ook met hem en school.
Laatst kwam hij boos thuis, tijdens het zagen lag zijn pols eruit.
Thuis flink bezig geweest om pols terug te zetten.
Waarbij ik moet oppassen dat er bij mij niks subluxeert.
Hij heeft een ebike.
Fietsenmaker heeft deze aangepast zodat hij met goeten en handen kan remmen.
bobje26 schreef:Als je EDS verdenkt naar de HA en dan verwijs naar de klinisch geneticus. Wij/jij kan niet bepalen of jij het hebt of niet...
bobje26 schreef:En welke soort EDS hebben jullie? Welk type?
Ik vind het zo bizar om te zien hoe de een (ikzelf bijvoorbeeld) nog heel mobiel is en alleen gewrichtsklachten en stollingsproblemen heb terwijl andere echt nog maar heel weinig kunnen!
jilleroo schreef:onder diagnose vorming lopen de meningen van artsen nog veel uiteen.. jouw art zei dat hypermobiel gen huidafwijkingen heeft. De mijne geeft de diagnose niet als je die niet hebt.. tsja....
Citaat:How are changes in the COL1A1 gene related to health conditions?
Caffey disease - caused by mutations in the COL1A1 gene
A mutation in the COL1A1 gene causes infantile cortical hyperostosis, commonly known as Caffey disease. The signs and symptoms of Caffey disease are usually apparent by the time an infant is 5 months old. This condition is characterized by swelling of soft tissues (muscles, for example), pain, and excessive new bone formation (hyperostosis). The bone abnormalities mainly affect the jawbone, collarbones (clavicles), and the shafts (diaphyses) of long bones in the arms and legs. For unknown reasons, the pain and swelling associated with Caffey disease typically go away within a few months. Through a normal process called bone remodeling, which replaces old bone tissue with new bone, the excess bone is usually reabsorbed by the body and undetectable on x-ray images by the age of 2. The mutation responsible for this condition replaces the protein building block (amino acid) arginine with the amino acid cysteine at protein position 836 (written as Arg836Cys or R836C). This mutation results in the production of type I collagen fibrils that are variable in size and shape, but it is unknown how these changes lead to the signs and symptoms of Caffey disease.
Ehlers-Danlos syndrome - caused by mutations in the COL1A1 gene
Several mutations in the COL1A1 gene are responsible for the arthrochalasia type of Ehlers-Danlos syndrome. These genetic changes lead to the production of a pro-α1(I) chain that is missing a critical segment. The absence of this segment interferes with the assembly and structure of type I collagen molecules and the processing of these molecules into collagen fibrils. Tissues that are rich in type I collagen, such as the skin, bones, and tendons, are most affected by this change.
A mutation in the COL1A1 gene has also been shown to cause the classic type of Ehlers-Danlos syndrome. This mutation changes one of the amino acids used to build the pro-α1(I) chain. Specifically, this genetic change replaces the amino acid arginine with the amino acid cysteine at position 134 (written as Arg134Cys or R134C). The altered protein interferes with other collagen-building proteins, disrupting the structure of type I collagen fibrils and trapping collagen in the cell. Researchers believe that this COL1A1 mutation only rarely underlies the signs and symptoms of classic Ehlers-Danlos syndrome.
osteogenesis imperfecta - caused by mutations in the COL1A1 gene
Osteogenesis imperfecta is the most common disorder caused by mutations in the COL1A1 gene. More than 400 COL1A1 gene mutations that cause osteogenesis imperfecta have been identified. Most of the mutations that are responsible for osteogenesis imperfecta type I, the mildest form of this disorder, reduce the production of pro-α1(I) chains. With fewer pro-α1(I) chains available, cells can make only half the normal amount of type I collagen. A shortage of this critical protein underlies the bone fragility and other characteristic features of osteogenesis imperfecta type I.
Several kinds of mutations in the COL1A1 gene cause the more severe forms of osteogenesis imperfecta, including types II, III, and IV. In addition to more severe bone problems, features of these conditions can include blue sclerae, short stature, hearing loss, respiratory problems, and a disorder of tooth development called dentinogenesis imperfecta. Some of the mutations that cause severe forms of osteogenesis imperfecta delete segments of DNA from the COL1A1 gene, resulting in an abnormally shortened, often nonfunctional pro-α1(I) chain. Other genetic changes alter the sequence of amino acids in the pro-α1(I) chain, usually replacing the amino acid glycine with a different amino acid. In some cases, amino acid substitutions alter one end of the protein chain (called the C-terminus), which interferes with the assembly of collagen molecules. These COL1A1 gene mutations lead to the production of abnormal versions of type I collagen. When this abnormal collagen is incorporated into developing bones and other connective tissues, it causes the serious health problems associated with severe forms of osteogenesis imperfecta.
dermatofibrosarcoma protuberans - associated with the COL1A1 gene
Dermatofibrosarcoma protuberans, a rare type of cancer that causes a tumor in the deep layers of the skin, is characterized by a somatic mutation involving the COL1A1 gene. Somatic mutations are not inherited, but are acquired during a person's lifetime and present only in certain cells. Dermatofibrosarcoma protuberans is associated with a rearrangement (translocation) of genetic material between chromosomes 17 and 22. This translocation, written as t(17;22), fuses part of the COL1A1 gene on chromosome 17 with part of a gene on chromosome 22 called PDGFB. This translocation is found on one or more extra chromosomes that can be either the normal linear shape or circular.
The fused COL1A1-PDGFB gene provides instructions for making a combined (fusion) protein that researchers believe ultimately functions like the active PDGFB protein. In the translocation, the PDGFB gene loses the part of its DNA that limits its activity, and production of the COL1A1-PDGFB fusion protein is controlled by COL1A1 gene sequences. As a result, the gene fusion leads to the production of a larger amount of active PDGFB protein than normal. Active PDGFB protein signals for cell growth and division (proliferation) and maturation (differentiation). Excess PDGFB protein abnormally stimulates cells to proliferate and differentiate, leading to the tumor formation seen in dermatofibrosarcoma protuberans.
other disorders - associated with the COL1A1 gene
Some people with COL1A1 mutations exhibit the signs and symptoms of both osteogenesis imperfecta and Ehlers-Danlos syndrome. These mutations replace the amino acid glycine with a different amino acid in the pro-α1(I) chain, which impairs the interactions between protein chains. The resulting abnormal type I collagen fibrils weaken connective tissue, causing the signs and symptoms associated with these two conditions.
A common variation in the COL1A1 gene (called a polymorphism) appears to increase the risk of developing osteoporosis. Osteoporosis is a condition that makes bones progressively more brittle and prone to fracture. This polymorphism, which occurs in a regulatory region of the COL1A1 gene, likely affects the production of type I collagen. Several studies have shown that women with this genetic change are more likely to have signs of osteoporosis, particularly low bone density and bone fractures, than are women without the change. This variation is only one of many factors that can increase the risk of osteoporosis.